

POWERTRANS Eletrônica Industrial Ltda. Rua Ribeiro do Amaral, 83 – Ipiranga – SP -Fone/Fax: (11) 2063-9001

E-mail: powertrans@powertrans.com.br Site: www.powertrans.com.br

Manual Técnico de Instalação e Operação

POWERBLOCK MASTER TRIFÁSICO

Controlador de Potência Tiristorizado -Trem de Pulso 2

Modelo: _	
Nº Série:	

<u>Índice</u>

- 1. Dados do Equipamento;
- 2. Características Gerais
- 3. Vantagens da Utilização;
- 4. Especificação Técnicas;
- 5. Dispositivos de Proteção;
- 6. Dispositivos de Sinalização;
- 7. Diagrama de Ligação;
- 8. Procedimentos de Instalação;
- 9. Procedimentos de Operação;
- 10. Problemas e Soluções;
- 11. Recomendações Gerais;
- 12. Dimensional;

1. Dados do Equipamento

Código do Produto :
= Potência do equipamento;
= Tensão de entrada : (VAC)
= Sistema de Controle (trem de pulsos);
= Sinal de Controle : ()
= Tipo de Carga: Trifásica;
= Alimentação do Módulo: (VAC)
= Tensão de Saída:

= Corrente Nominal:

1. Características Gerais

Powerblock Master é um sistema eletrônico em estado sólido, projetado especialmente para controlar a potência em uma carga através de um sinal de controle em baixa potência.

A unidade completa consiste de um gabinete metálico (Grau de proteção IPOO-DIN 40050/IEC 144) onde são alojados, um sistema eletrônico de controle, um circuito de SCR's em antiparalelo, dissipadores e ventilação. Uma variação de 0 a 100% do sinal de controle significa uma variação de 0 a100% na potência.

Nos cartões de circuito impresso situam-se os led´s de sinalização e trimpot de ajuste, disponível no frontal do equipamento. Barra de conectores para entrada e saída de fiação de comando e saída de alarmes e um botão de reset da unidade, quando da ocorrência de alguma falha.

Vantagens na Utilização

- Possibilidade de ajuste de acordo com a corrente máxima de carga;
- Partida inicial em Soft start.
- Desligamento automático quando da ocorrência de Curto Circuito (<= 8,33ms/60Hz).
- Sistema compacto e de fácil instalação.
- Inexistência de contatos móveis na potência.
- Baixo índice de manutenção.
- Sinalização visual das principais condições de funcionamento.

3. Especificação Técnica

Módulo de Potência:

Faixa de Potência :..... Até 1220Kva - Sistemas Trifásicos;

Tensão de Barramento:......220 / 380 / 440Vac (± 10%)

Potência de Saída:.....0 – 100% Potencia Nominal;

Corrente Nominal :.....30 -1600 A;

Freqüência:50/60 Hz

Módulo de Controle:

Tensão de Alimentação:......110 / 220Vac (± 10 %) – 30VA;

Proteção de curto Circuito:Fusível retardado embutido 5 x 20mm;

Sinais de Controle:4 a 20mA / 0 - 5Vdc / 0 - 10Vdc / Potenciômetro;

Rele de Falha:.....Tipo C (NA / NF) – 3 A /250Vac

Modulo de Controle :Trem de Pulso;

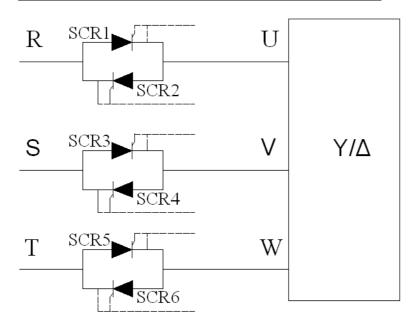
Saída para Galvanômetro:.....0 - 10mA;

Temperatura Ambiente:.....0 a 45°C;

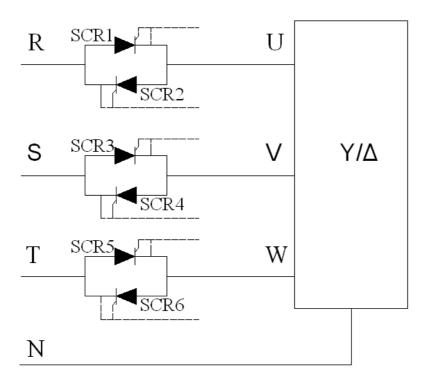
Proteção :..... IP00 (DIN 40050 e IEC 144)

4. Dispositivo de Proteção

- <u>Falta de Fase</u> Atua quando da falta de uma das fases;
- <u>Curto Circuito</u> Atua em , no máximo, um semi-ciclo da senóide após a ocorrência de um curto circuito na carga.
- <u>Sobre corrente</u> Atua quando a corrente de trabalho ultrapassar a corrente nominal ajustada;
- Sobre temperatura Atua quando a temperatura no dissipador ultrapassar 84°C.
- Falha de SCR Atua quando existe queima de um dos Tiristores

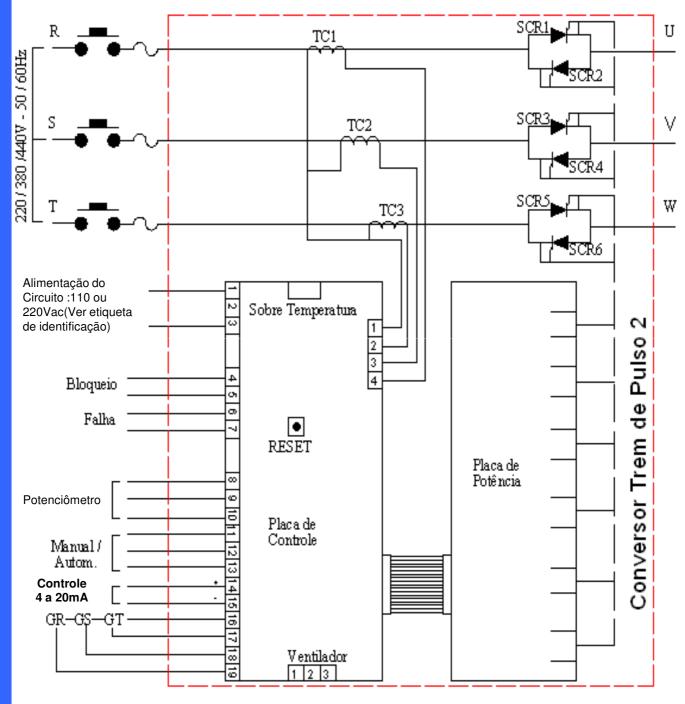

Dispositivos de Sinalização

tiristores.



6. Diagrama de Ligação

6.1 Trifásica (3 Fases Controladas)



6.2 Trifásica (Estrela Com Neutro)

6.3 Esquema de Ligação

7. Procedimentos de Instalação

7.1 Instrução de Montagem

- <u>Tensão de Barramento</u> A tensão de barramento deve obedecer a mesma na etiqueta de identificação da unidade, com tolerância de ± 10%;
- <u>Tensão de Alimentação</u> A tensão de barramento deve obedecer a mesma na etiqueta de identificação da unidade, com tolerância de ± 10%;
- Sinal de controle O sinal de controle deve ser idêntico ao mencionado na etiqueta de identificação da unidade.
- <u>Posicionamento</u> O controlador de potência deve ser montado de modo que suas aletas de refrigeração permaneçam na posição vertical .

Obs: Não montar na mesma vertical mais de uma unidade.

- <u>Ventilação</u> Prever grades de ventilação no lado inferior e superior do armário para constante troca de ar, a fim de obter dissipação de calor. As grades de ventilação devem possuir filtros apropriados para reter a poeira em suspensão.
- <u>Cabeamento</u> Os cabos de sinalização e controle devem ser instalados em separado dos cabos de potência. Os cabos de controle deve ser blindados e aterrados em um único ponto, próximos aos terminais de entrada.

8. Procedimentos de Operação

Após instalação elétrica do equipamento e seguindo todos os itens abaixo relacionados, iremos garantir um bom funcionamento do mesmo, são eles:

- A) Energizar a placa de controle, verificando a sua respectiva tensão de alimentação (Bornes 1 e 3).No frontal do equipamento encontra-se acessos os led ENERGIZADO,BARRAMENTO DESCONECTADO e COMANDO AUSENTE, este último em caso de sinal de 4 a 20mA.
- B) Energize o barramento de entrada (220 ou 380 ou 440Vac), verificando sempre a tensão indicada na etiqueta. Observe que o Led BARRAMENTO DESCONECTADO deve apagar.
- C) Insira um contato seco nos bornes 3 e 4, para liberar ou bloquear os disparos.
- D) Acione o comando da unidade, isto é, injete o sinal apropriado. No caso do sinal de comando 4 a 20mA .(bornes 14 (+) e 15(-)), verifique que o Led " Comando Ausente " deverá apagar a partir do momento que este sinal for maior que 3,8mA.
- E) Ajuste o trimpot "Sobre corrente" de modo a permitir a atuação da proteção no valor de corrente desejado. Considere que o fim de curso do trimpot (100%)é coincidente com a corrente nominal da unidade (indicado na etiqueta da unidade)
- F) Caso sejam utilizadas as saídas para galvanômetro (bornes 16,17,18 e 19), observe o sentido do deslocamento do ponteiro do mesmo, corrigindo, se necessário, a polaridade na ligação.
- G) Caso seja utilizadas as saídas do relê de falha (bornes 6 e 7), perceba que o mesmo indica a ocorrência de alguma falha sinalizada no frontal do equipamento. Observe que "BARRAMENTO DESCONECTADO" não é falha, portanto não será sinalizado pelo relê. Os contatos deste relê saem configurados do seguinte modo: Contato 3 e 4 (NA) e contatos 5 e 6 (NF), deste modo em condições de normalidade, o relê estará desenergizado. Podemos mudar esta configuração através do J3 (unidade trifásica trem de pulso), fazendo com que o relê permaneça energizado em condições de normalidade. Teremos agora os contatos 3 e 4 (NF) e contatos 5 e 6 (NA).
- H) A unidade está agora preparada para operação ,aonde é possível então verificar presença de pulso nos SCR's através dos LED's LD21 a LD26 , que encontram-se na placa de potência.

9. Problemas e Soluções (Troubleshooting)

Neste Capítulo apresentamos algumas causas para possíveis problemas . Se o usuário encontrar dificuldades em entender a sinalização de alguns dos alarmes existentes na unidade , identifique-o e consulte a lista abaixo. Se mesmo assim o problema persistir, comunique-se com a Powertrans Eletrônica Industrial LTDA.

9.1 O Led ENERGIZADO permanece apagado;

- Verificar se existe tensão na alimentação do cartão de controle.
- Verificar se a tensão de alimentação é a indicada na etiqueta da unidade.
- Verificar Fusível F1 da placa de controle.

9.2 O led BARRAMENTO DESCONECTADO não apaga ;

- Verificar se existe tensão no barramento de entrada conforme etiqueta de identificação da unidade.
- Verificar se o flat cable (CN1) está devidamente conectado, tanto na placa de controle quanto na placa de potência.

9.3 O led COMANDO AUSENTE permanece apagado.

- No caso de sinal de controle igual a 4 a 20mA, 0 a 10V ou 0 a 5V, verificar se a polaridade desta ligação está correta.
- Verificar a existência deste sinal de controle.
- No caso de potenciômetro, verificar se não existe quebra de um dos fios, ou ainda, se estão devidamente conectados.

9.4 FALHA: SUBALIMENTAÇÃO (Subtensão na fonte)

 Observar tensão de alimentação (110 / 220V), sendo que esta não deve ser menor que 80% da nominal.

9.5 FALHA – SOBRE TEMPERATURA;

Se o alarme ocorreu sem um sinal de superaquecimento dos SCR's.

- Observe se o conector TM (placa de controle) está devidamente conectado.
- Observe se n\u00e3o existe fio quebrado ou desconectado nos terminais do termostato. Este \u00e1ltimo encontra-se na unidade
- Verificar possível defeito no termostato, contato, normalmente fechado.

Se o alarme ocorreu devido a um superaquecimento dos SCR's.

- No caso da ventilação forçada observar o funcionamento do(s) ventilador(es).
- Observar um possível excesso de temperatura ambiente.
- Observar um possível excesso de poeira depositada nos dissipadores do SCR's

9.6 FALHA - FALTA DE FASE

- Verificar a presença das três fases no barramento de entrada.
- Se existirem fusíveis ultra rápidos no barramento de entrada da unidade, verificar se todos estão devidamente conectados e em boas condições.

9.7 FALHA - SOBRE CORRENTE.

Se a unidade não permitir ajuste de sobre corrente (não limitar no valor de corrente desejado)

- Verificar se o conector TC1, TC2, TC3, está devidamente conectado.
- Observar se o trimpot de ajuste n\u00e3o est\u00e1 com um dos seus terminais quebrado.

<u>9.8 Havendo Passagem de corrente na carga, mesmo com o sinal de controle no valor mínimo.</u>

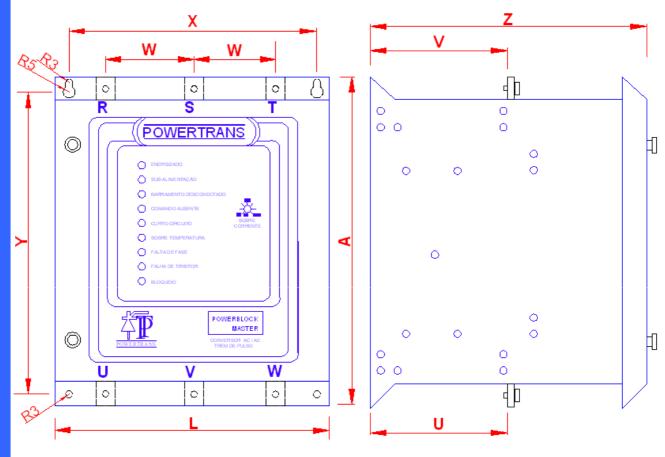
Verificar se os SCR´s estão em curto. Caso o problema não seja um nenhum dos tiristores, a origem do defeito está no circuito eletrônico.

9.9 Havendo apenas passagem parcial de corrente, mesmo com o sinal de comando em seu valor máximo.

- Verificar se o valor limitado de corrente está correto.
- Verificar se há ausência de sinal de gatilho de um dos tiristores (observar através dos led's de presença de pulso). Verificar a existência de ste sinal, observar se a carga está devidamente conectada. Se estiver tudo em ordem, o defeito provavelmente é do tiristor.

Obs: No caso de Subalimentação, Sobre temperatura, Curto Circuito e Falta de Fase, a unidade deve ser "resetada" (botão de reset tipo push botton que se encontra na placa de controle.

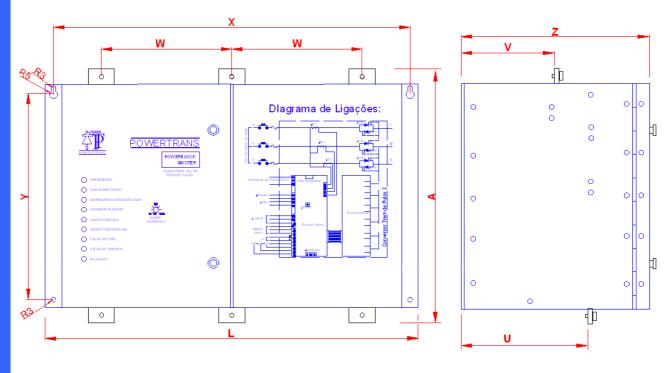
Recomenda-se que o usuário localize a causa do problema e solucione-o antes de "resetá-la".


10. Recomendações Gerais

- Os fusíveis ultra rápidos, originalmente especificado, não devem ser substituídos por fusíveis de características diferentes.
- Limpar periodicamente, com ar comprimido, o excesso de poeira no dissipador de calor do tiristor, a fim de melhorar a dissipação do calor. Os filtros de entrada e saída de ar do armário também devem ser limpos periodicamente.
- O controlador de potência deve ser separado galvanicamente da rede (disjuntores e chaves magnéticas) em caso de manutenção, conforme diagrama de ligação .
- Reapertar periodicamente as conexões.

11. Dimensional

Dimensão 1



DIM (mm)	Corrente Nominal	<u>A</u>	Ŀ	ارح	<u>v</u>	W	<u>X</u>	<u>Y</u>	<u>z</u>
1	Até 150A	270	226	130	115	60	200	245	255
1	175 a 250A	310	256	150	150	65	230	285	255

11. Dimensional

Dimensão 2 e 3

DIM (mm)	Corrente Nominal	<u>A</u>	L	ارح	<u>v</u>	w	<u>X</u>	<u>Y</u>	<u>z</u>
2	300 a 600A	600	655	190	80	195	626	423	305
3	800 a 1000A	600	655	190	80	195	626	423	340